作为国家在科学技术方面的学术机构和全国自然科学与高新技术的综合研究与发展中心,建院以来,中国科学院时刻牢记使命,与科学共进,与祖国同行,以国家富强、人民幸福为己任,人才辈出,硕果累累,为我国科技进步、经济社会发展和国家安全做出了不可替代的重要贡献。/ 更多简介 + 中国科学技术大学(简称“中科大”)于1958年由中国科学院创建于北京,1970年学校迁至安徽省合肥市。中科大坚持“全院办校、所系结合”的办学方针,是一所以前沿科学和高新技术为主、兼有特色管理与人文学科的研究型大学。 中国科学院大学(简称“国科大”)始建于1978年,其前身为中国科学院研究生院,2012年更名为中国科学院大学。国科大实行“科教融合”的办学体制,与中国科学院直属研究机构在管理体制、师资队伍、培养体系、科研工作等方面共有、共治、共享、共赢,是一所以研究生教育为主的独具特色的研究型大学。 科技大学(简称“上科大”),由市人民政府与中国科学院共同举办、共同建设,2013年经教育部正式批准。上科大秉持“服务国家发展战略,培养创新创业人才”的办学方针,实现科技与教育、科教与产业、科教与创业的融合,是一所小规模、高水平、国际化的研究型、创新型大学。 随着我国经济的快速发展,大量的含油污水被排放,同时海洋原油泄漏事件频发,对生态环境和人类的健康造成了严重威胁。传统油水分离方法主要包括气浮法、离心分离法、吸附和燃烧等,但均存在效率低、成本高、应用范围窄等缺点。超浸润分离膜由于具有结构可控性好、分离效率高和分离精度高的优点,目前成为油水分离领域的研究热点。近期,中国科学院宁波材料技术与工程研究所研究员刘富团队(先进功能膜)在高性能聚偏氟乙烯(PVDF)油水分离膜方向取得了一系列新成果。 1)PVDF瞬时催化及油水分离膜。针对复杂体系的油水分离问题,以机械性能和热稳定性能优异的聚偏氟乙烯(PVDF)为基膜,制得到具有微纳米多级组装结构的PVDF-AuNPs微反应器分离膜。首先利用聚多巴胺作为膜表面“功能涂层”,对PVDF基膜进行初步修饰,然后将AuNPs微球通过动态过滤的方法负载到PVDF的指状孔内,形成微反应器。所得膜能够对含有硝基苯酚的水包油复杂体系,实现瞬时的硝基苯酚催化降解和油水分离。该方法对于将油水分离膜应用于实际含油废水处理,起到了重要的推动作用。相关工作已经发表于Chemical Engineering Journal,2018, 334,579,副研究员王建强和吴紫阳为共同作者,刘富为通讯作者。 2)具有超稳定刚性浸润表面的柔性PVDF油水分离膜。针对通常聚合物微孔膜的表面微纳结构不稳定、在化学腐蚀及物理损伤下易蠕变及衰减的问题,通过仿生植物根系固定土壤模型,利用微孔PVDF膜表面的微纳结构限域固定TiO2纳米粒子,制了具有刚性界面TiO2界面的柔性PVDF微孔膜。所得膜具有优异的稳定性,能够抵抗物理损伤(液压、手指擦拭、液氮淬火后砂纸磨擦)、高温和苛刻的化学腐蚀(强酸、强碱、强氧化剂次氯酸钠),并且能够连续有效分离含有表面活性剂的油包水乳液。在错流模式下,通过负载超亲水纳米TiO2粒子制的PVDF膜,可实现水包油乳液的连续分离(通量达1700,PVDF管分离效率96%)(如图3)。 相关工作已经发表于Scientific Reports,2017, 7: 14099,副研究员熊竹和林海波为共同作者,刘富为通讯作者,文章发表后受到了同行的广泛关注,该论文是2017年Scientific Reports期刊阅读量多的前100篇文章之一。 3)超大通量静电纺丝PVDF油水分离膜。除了油水废液的复杂性和膜界面稳定性的制约,油水分离膜往往也受限于膜的低通量和易污染性。针对该问题,团队采用静电纺丝技术,通过将静电纺丝和静电喷涂相结合,制得到了具有超高通量的PVDF纳米纤维油水分离膜,具有独特的微米级纤维及纳米级微球复合的结构。将该膜应用于高粘度的十甲基环五硅氧烷包水体系时,渗透系数高达88166±652(分离效率99%),远高于已报道数据。该方法制过程简单,无需复杂的表面改性过程,是一种适宜工业化生产的新方法。相关工作已经发表于Journal of Materials Chemistry A,2018, 6, 7014-7020。浙江理工大学博士吴金丹和硕士生丁雅杰是论文的共同作者,王建强、浙江理工大学教授王际平和刘富为该工作的共同通讯作者。 上述系列研究工作受到了国家重点研发计划(2017YFB0309600)、国家自然科学基金(5161101025、51475449、51703233)、中科院青促会(2014258)和宁波市创新团队(2014B81004)等项目的资助支持。 随着我国经济的快速发展,大量的含油污水被排放,同时海洋原油泄漏事件频发,对生态环境和人类的健康造成了严重威胁。传统油水分离方法主要包括气浮法、离心分离法、吸附和燃烧等,但均存在效率低、成本高、应用范围窄等缺点。超浸润分离膜由于具有结构可控性好、PVDF管分离效率高和分离精度高的优点,目前成为油水分离领域的研究热点。近期,中国科学院宁波材料技术与工程研究所研究员刘富团队(先进功能膜)在高性能聚偏氟乙烯(PVDF)油水分离膜方向取得了一系列新成果。 1)PVDF瞬时催化及油水分离膜。针对复杂体系的油水分离问题,以机械性能和热稳定性能优异的聚偏氟乙烯(PVDF)为基膜,制得到具有微纳米多级组装结构的PVDF-AuNPs微反应器分离膜。首先利用聚多巴胺作为膜表面“功能涂层”,对PVDF基膜进行初步修饰,然后将AuNPs微球通过动态过滤的方法负载到PVDF的指状孔内,形成微反应器。所得膜能够对含有硝基苯酚的水包油复杂体系,实现瞬时的硝基苯酚催化降解和油水分离。该方法对于将油水分离膜应用于实际含油废水处理,起到了重要的推动作用。相关工作已经发表于Chemical Engineering Journal, 2018, 334,579,副研究员王建强和吴紫阳为共同作者,刘富为通讯作者。 2)具有超稳定刚性浸润表面的柔性PVDF油水分离膜。针对通常聚合物微孔膜的表面微纳结构不稳定、在化学腐蚀及物理损伤下易蠕变及衰减的问题,通过仿生植物根系固定土壤模型,利用微孔PVDF膜表面的微纳结构限域固定TiO2纳米粒子,制了具有刚性界面TiO2界面的柔性PVDF微孔膜。所得膜具有优异的稳定性,能够抵抗物理损伤(液压、手指擦拭、液氮淬火后砂纸磨擦)、高温和苛刻的化学腐蚀(强酸、强碱、强氧化剂次氯酸钠),并且能够连续有效分离含有表面活性剂的油包水乳液。在错流模式下,通过负载超亲水纳米TiO2粒子制的PVDF膜,可实现水包油乳液的连续分离(通量达1700 ,分离效率96%)(如图3)。 相关工作已经发表于Scientific Reports, 2017, 7: 14099,副研究员熊竹和林海波为共同作者,刘富为通讯作者,文章发表后受到了同行的广泛关注,该论文是2017年Scientific Reports期刊阅读量多的前100篇文章之一。 3)超大通量静电纺丝PVDF油水分离膜。除了油水废液的复杂性和膜界面稳定性的制约,油水分离膜往往也受限于膜的低通量和易污染性。针对该问题,PVDF管团队采用静电纺丝技术,通过将静电纺丝和静电喷涂相结合,制得到了具有超高通量的PVDF纳米纤维油水分离膜,具有独特的微米级纤维及纳米级微球复合的结构。将该膜应用于高粘度的十甲基环五硅氧烷包水体系时,渗透系数高达88166±652 (分离效率99%),远高于已报道数据。该方法制过程简单,无需复杂的表面改性过程,是一种适宜工业化生产的新方法。相关工作已经发表于Journal of Materials Chemistry A, 2018, 6, 7014-7020。浙江理工大学博士吴金丹和硕士生丁雅杰是论文的共同作者,王建强、浙江理工大学教授王际平和刘富为该工作的共同通讯作者。 上述系列研究工作受到了国家重点研发计划(2017YFB0309600)、国家自然科学基金(5161101025、51475449、51703233)、中科院青促会(2014258)和宁波市创新团队(2014B81004)等项目的资助支持。 以上信息由镇江市建成塑料制品有限公司整理编辑,了解更多PP风管,PVDF管信息请访问http://www.zjjcsl.cn |